```
1
2
  #
3 # This programme relies upon being called at some frequency defined by a cr
  \parallel# It will read the temperature from any number of DS18B20 sensors and write
4
  # to a file whose name depends upon the year and month. Although it could be
5
  # sophisticated by only writing when the temperature has changed, my expect
6
  # it will be run about every 10 minutes (144 entries per day) and really th
7
  # wouldn't be worthwhile. It also makes plotting the graph easier.
8
  #
9
10 import subprocess
11 import os
  import glob
12
13 | import time
14
  from datetime import datetime
15
16
  # file_name is the place where the readings will be stored.
17
18
  global file_name
19
20
  base_dir = '/sys/bus/w1/devices/'
21
22 starttime = time.time()
  |filename = datetime.now().strftime("%Y%m")
  file_name = '/home/pi/Documents/Python_2_Projects/t'+ filename + '.csv'
24
25
  # base dir defines where to find the devices to be read
26
27
28
29
30
31
  #This section is a copy of the standard ways of reading the sensors
32
33
  def read_temp_raw(device_file):
34
           f = open(device file, 'r')
35
           lines = f.readlines()
36
           f.close()
37
           return lines
38
39
  # Added modification to read_temp to deal with the circumstances where temp
40
  # cannot be converted to a float number (e.g. 0)
41
42
  #
  def f_float(x):
43
           try:
44
                   return float(x)
45
           except (ValueError, TypeError):
46
                   return 0.0
47
48
49
  # Read the given device and return the temperature in degrees C
50
  def read_temp(device_file):
```

```
lines = read temp raw(device file)
52
           while lines[0].strip()[-3:] != 'YES':
53
                   print ('failed', str(device_file))
54
                   time.sleep(0.2)
55
                   lines = read_temp_raw(device_file)
56
           equals pos = lines[1].find('t=')
57
           if equals_pos != -1:
58
                   temp_string = lines[1][equals_pos+2:-3]
59
                   temp_c = f_float(temp_string) / 10.0
60
                   temp_f = temp_c * 9.0 / 5.0 + 32.0
61
62
                   return temp c
63
64
  #
65
  # The following opens the months output file, then for each of the DS18B20s
66
  # the existence of a file 28* in the /devices/ directory, it reads the temp
67
  # writes the value to the file. It then writes a newline to the file and cl
68
69
  file_object = open(file_name, "a", 1)
70
  print time = str(datetime.now())[:-7]
71
  file_object.write(print_time)
72
  for device in glob.glob(base dir + '28*'):
73
           device file = device + '/w1 slave'
74
           temp_temp = read_temp(device_file)
75
           file_object.write(", ")
76
           file_object.write(temp_temp)
77
78
  file object.write("\n")
79
  file object.close()
80
81
82
```

83 84